CAS-supported Multiple Representations in Elementary Linear AlgebraThe Case of the Gaussian Algorithm

نویسنده

  • Wolfgang Lindner
چکیده

Usually the Gaussian algorithm (GA) is presented at school as a method of solving a given system of linear equations by reducing it to a “triangular form”. In contrast to this technically oriented view, I will demonstrate a CAS-supported learning environment which includes a visual representation of GA and an activity-oriented „Gauss-game”. This game stresses the concept of elementary matrices and leads directly to a partial implementation of GA in the form of a „semi-automatic” functional CAS-program. These multiple representation of GA tries to take into consideration the research results on mental representations, to design rich variations of student activities and thereby to lead leading to webbeb concepts around GA. The CAS MuPAD is used. Kurzreferat: Üblicherweise wird der Gauß-Algorithmus (GA) in der Schule als eine Methode präsentiert, ein gegebenes lineares Gleichungssystem durch Reduktion auf Dreiecksgestalt zu lösen. Im Gegensatz zu dieser technisch orientierten Sicht wird hier ein CAS-gestütztes Lernarrangement skizziert, welches eine visuelle Repräsentation des GA und ein handlungsorientiertes „Gauss-Spiel” einschließt. Dieses Spiel basiert auf dem Konzept der Elementarmatrizen und führt unmittelbar zu einer partiellen Implementation des GA in Form eines „semi-automatischen” funktionalen CAS-Programms. Die multiplen Repräsentationen des GA versuchen Forschungsbefunde über mentale Repräsentationen aufzugreifen, um reichhaltige Aktivitäten der Lernenden zu ermöglichen und dadurch Vernetzungen im Umkreis des GA anzubahnen. Benutzt wird das CAS MuPAD. ZDM-Classification: A30, A4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

OPTIMAL SMART BASE ISOLATION SYSTEM FOR MULTIPLE EARTHQUAKES

Hybrid control system composed of a base isolation system and a magneto-rheological damper so-called smart base isolation is one of effective semi-active control system in controlling the seismic response of structures. In this paper, a design method is proposed for designing the smart base isolation system in order to achieve an effective performance under multiple earthquakes. The base mass, ...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Linear Time Algorithm for Identifying the Invertibility of Null-Boundary Three Neighborhood Cellular Automata

This paper reports an algorithm to check for the invertibility of nullboundary three neighborhood cellular automata (CAs). While the best known result for checking invertibility is quadratic [1, 2], the complexity of the proposed algorithm is linear. An efficient data structure called a rule vector graph (RVG) is proposed to represent the global functionality of a cellular automaton (CA) by its...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003